


Contents

About this book
 3
Who is it for? 3
What do product managers do? 3

Before you build your product
 4
Figure out what to build 4
Figure out what to build next 5
Figure out what to kill 7

Building your product
 9
0. Know your users 9
1. e general idea 11
2. Wireframes 13
3. Colours, fonts and so on 14
4. Create a speci"cation 14
5. Create a plan for release 15
6. Ask engineering to build it 16
7. Testing code 16
8. Testing on users 17
9. Release the product 18

- 1 -



After your product is built
 19
Statistical data 20
Personal reactions 20
Pulling them together 21

Your Team
 22
Engineers 22
Project Managers 23
Community Managers 24
Analysts 25
Design 27
Marketing and Strategy 28

You Yourself
 30
Communication 30
Point everyone in the same direction 32
e boring work 33
Finally 33

Resources
 34
Wireframes 34
User testing 34
anks 35

- 2 -



About this book
is book is about product management for organisations building 
software, explained as simply as possible. is is a short book, because it 
isn't very complicated.

"If I had more time I would have written a shorter letter." - Benjamin Franklin

Who is it for?

• You're already in or about to start a product manager role building 
software - something on the web, or for a mobile or embedded device. If 
you work in consumer goods or any other industry, I recommend a 
different book.

• You don't have the time or patience for a fat textbook.
• You cringe at words like synergy, vision and "action" as a verb.

What do product managers do?

Product Managers plan out what to build, help build it, then check that it 
worked. ey also keep everyone pointing in the same direction.

- 3 -



Before you build your product

Figure out what to build
You probably wanted to work on online or mobile products because you 
enjoy using them so much, and have some sense of what makes them 
good or bad. Now that you're in the driving seat, you might be tempted to 
just start making stuff. Don't. Before you begin, you should understand 
clearly not just what you are doing, but why.

First, you need to know what your organisation fundamentally wants. Do 
you want to make money right now? Scale the business? Or just make the 
world a better place? Most organisations want to do all these things. e 
question is, which one do you want to do "rst? You should "gure this out 
way before you start building products.

• You might want more pro"t in the short term. You can get this by 
increasing what your customers pay you, or increasing the number of 
paying customers.

• You might want to scale the business by investing in something, in the 
belief that you can make money back later on.

• You might want to squeeze cash out of a successful product to invest in 
something new.

• You might want to cut costs to survive in a tough economy.
• You might just be a good egg that wants to help people in some way.

- 4 -



Let's say that your fundamental goal is to scale the business. Step by step, 
consider what you can do to make that happen.

• e best way to scale the business is by adding users.
• e best way to add users is by helping users tell their friends about us.
• e best way to help users tell their friends about us is to add a social 

media sharing button.

At each step, ask yourself - this is one way, but is it the best way? Figuring 
this out is entirely dependent on the circumstances, but you might 
consider - which one will have the most effect on the users or revenue? 
Which one are you good at? Which one will cost least to implement? 
Which one might give you a unique advantage over the competition?

Here's the same list, including alternatives.

• We could scale the business by increasing revenue per user, but the best 
way is to add users.

• We could add users by increasing traffic from search, but the best way is 
to help users tell their friends about us.

• We could help users tell their friends about us by paying them a referral 
bonus to do so, but the best way is to add a social media sharing button.

is process will help you identify the best way to attack your goal.

Figure out what to build next

You have a good idea now what to do for product one, but consider that:

• You will probably be building more than one product at once.
• You should be planning ahead for your next few products.

- 5 -



e good news is that you will never be short of products to build. You 
are a resource, your team is a resource, engineering is a resource - and the 
worst thing you can be doing is nothing. On top of that, other 
departments will and should be bugging you to build product X or Y 
which will help them do their job better - a bug tracking system for 
engineering, an ad product for sales, and so on. e next product might 
be one of these - for example, if bugs aren't getting squashed effectively 
because there's no way to manage the bug queue, "xing this will help 
users more than changing a button colour. In short, the next product 
should be next most effective at attacking the fundamental goal.

When you're planning out your list of things to do, there are two 
common traps to watch out for.

• Building the next shiny product is tempting. Once a product is launched 
and live, it looks like you're done, but you're not. You know that, but it 
will never be obvious to everyone else - so there will be pressure for you 
to move onto the next thing. Resist. Iterating on your product, once 
live, is as important as creating the product itself - so ensure you're 
building in enough time for this.

• Jumping around between types of product can be inefficient. If you're 
working on a social feature right now, jumping to a mobile app will be 
tougher than building another social feature next - you'll need to get 
your head out of one place into another, your engineers may need to 
learn a new technology, and so on. is is dependent on your people - 
some like hopping around, some hate it. Your engineers might have 
institutional knowledge about a new area, or they might not. Make sure 
you're being efficient about switching product types.

How far ahead should you plan? Generally, the larger your organisation, 
the more you should plan ahead. Larger organisations have more people - 
more people means more opinions and more folk you need to convince.

- 6 -



Figure out what to kill

Killing products is just as important as making them. Like pruning a 
plant, cutting off dying parts makes the rest stronger.

It is tempting to just leave old products running, simply because they're 
already built and appear to cost little or nothing to run. However, 
consider that:

• More features means an overall product that's harder to use - so 
removing unused features gives you bene"t for little cost.

• As the product grows, keeping feature X running when you introduce 
products Y and Z can take resource if there's a con%ict - so even though 
you aren't spending time directly on old feature X, you are increasing 
the amount of time taken to build Y and Z.

In the same way you "gure out which products to build, you need to 
"gure out which products to kill.

• Which features aren't being used by our users?
• Which features aren't giving anything valuable back to us? (e.g. money, 

reputation, warm fuzzy feelings)
• Which features are costing us the most to run? (e.g. maintenance, 

operations issues)

Killing a feature is hard - you are exchanging a piece of functionality in 
the short term for making a product easy to use in the long term. Change 
is hard for everyone - especially users. Your most involved users are used 
to the way things are, and are the most vocal when things change - some 

- 7 -



of them may even leave. If that is the case, you are making a bet that 
you'll acquire more or more valuable users than the ones you lose.

- 8 -



Building your product

You are building a product for your users, so before you do anything at 
all, you must understand them.

en, you can start the build process:

1. Have the general idea of what you want to build in your head.
2. Figure out how users interact with it and generate some wireframes.
3. Figure out what it looks like - colours, fonts, and so on.
4. Create a document (called a speci"cation) that de"nes the product end 

to end.
5. Create a plan for release.
6. Ask Engineering to build it, and answer questions as they come up.
7. Release the product according to the release plan, and observe data 

and reactions.

0. Know your users

Ultimately, you are building a product which will bene"t your 
organisation. You can build with this in mind (Is is Good for the 
COMPANY?), but when it comes to the nitty gritty of layouts, colours 
and %ows, it leads to better products when you focus on the user.

- 9 -



First, you must understand who the users are. Grouping together set of 
users who share common features will help you. is is what business 
types call "segmentation". You can segment based on a whole bunch of 
parameters, and the choice is very dependent on the product and your 
intuition of the market. To start you off, here are some common ones.

Demographics, like age, location, education level, income, or occupation.
Psychographics, like social class, lifestyle, or personality type.
Behaviour, like how heavy a user they are, what they use the product for, 
or how much they love your organisation.
ink carefully about the groups of users you can identify. Surf your user 
forums, interview people, observe the interactions on your website. Do 
some people write comments while others rate items? Some younger 
users know your product inside and out, while older ones are confused by 
it? Some use it at home, others use it at work?

Next, you can build personas. Personas are little caricatures of users who 
represent segments that you think are important. For example, if you 
built a mobile cooking app that some people use professionally, you can 
invent a user called "Raymond the Chef" to represent those professional 
users. Create a back-story and a personality that is typical for the group. 
is will help you build a product with Raymond in mind, and help others 
in the organisation understand why a product is being built that way. As 
you see interactions from users or speak to them directly, you should be 
able to identify them by persona (e.g. "he's a Raymond") and "ll out your 
understanding of the personalities you are creating.

Creating segments and personas is the best way to attack the problem 
with larger products, but it's a lot of work. e easy way is to design for 
yourself - this is what some call "scratching your own itch". If you are 
bang in the target segment, you get instant feedback (from yourself) as a 
product comes to life - hence products can come together very quickly. 
Keep in mind that, no matter how typical you think you are, you're 

- 10 -



probably way more technical and know way more about the history of a 
product than any user.

However you do it - always keep in mind the user as the product gets 
built. It's amazingly easy for smart people to spend weeks designing and 
building an amazing new feature, without realising that nobody had a 
problem with the old one. is will help:

Do user testing and watch the results with everyone in the department / 
company on a weekly basis. It doesn't have to be in-depth or even 
something you conduct yourself - just something quick, done online. You 
can focus testing tasks on whatever you are working on at the moment.
Forward all customer feedback to everyone in the team. Bear in mind that 
your users aren't always right, but if you believe they are giving you the 
right signals, this is an amazing and cheap way to go.

1. The general idea

Staring at a blank whiteboard is scary. What IS the idea? How DO you 
improve the signup process? How CAN you stop users leaving the site at 
step 3? Don't panic - there is a way to get started.

It's both tempting and possible to go straight to the answer. You might be 
smart or experienced enough to go straight to the best solution, and if 
you need to solve something quickly, this is the only choice. If you have a 
bigger problem and it's most important to try to get it right, try following 
this process, which %atcap-toting designers call "ideation".

First - go wide and pull out all the sites, apps, products that made you say 
"that's awesome" or "my "ve year old could have pooped that out". Don't 
restrict yourself. Ask your colleagues. Ask your pals. Ask the user 

- 11 -



community. Most importantly, don't tell anyone that their idea is dumb - 
dumb ideas often spark off better ones. People are smart, and having lots 
of perspectives will help you see the problem from every angle.

en, narrow down the ideas to get the most sensible. Good ideas are 
usually ones that solve a problem for a user (these are sometimes called 
pain points.) If you know users are having real trouble logging in, or want 
to communicate with each other but can't, these are problems that need 
solving. e evidence for this is what's happening right now on your site, 
on other sites where your users are going, through interviews, and so on. 
Listen closely to your users, but don't take everything as gospel - to quote 
Henry Ford, "If I had asked people what they wanted, they would have 
said 'faster horses'."

You are using your judgement to pick the best ideas - so is everyone else. 
Check to see if they tally. If they don't, debate it - defend your ideas and 
ask them to do the same. In the end, the call is yours - you are ultimately 
responsible for the success or failure of this product.

You don't have to agree about everything. Some of the best products 
come out of one person defying everyone else and building what seems 
crazy. Many of the worst products happen that way too. You have the 
choice - allowing crazy things to happen means you are taking more of a 
risk for more potential reward. Whichever way you go, avoid groupthink, 
which is compromising every sensible idea just to make people happy. 
What's most important is user happiness.

Once you have settled on an idea - make it solid. If the goal is to add 
users, make sure you're starting to track the number of users right now, 
so you have a baseline to compare against later.

- 12 -



2. Wireframes

Wireframes are pictures of the product that are just lines and text - no 
colours, no fancy styles. Wireframes are there to de"ne what happens 
when a user clicks X, drags Y or pinches Z. (e process is called 
interaction design.)

You and your designer will work to construct a set of layouts, at each step 
deciding what the right user interface element is. Should you use 
horizontal or vertical tabs? How much contextual information is 
necessary? Swipe or click interaction? What happens when the device 
rotates? If you spend a lot of time sur"ng sites or apps, you probably 
already have a good idea of which ones you liked using - go back, and 
"gure which interactions that seemed natural. (Remember that the best 
tools are ones that you don't notice.)

Now that you have a vague idea of what the product looks like and what 
happens when you click X or Y, you can start to test it.

One way is paper prototyping. Print out all of the wireframe screens 
you've created, sit a user in front of them, get them to tell you what they 
think, and point to where they would click on the page if it was real. 
When they point, swap out the paper with the next screen. An alternative 
is to put every screen into keynote / powerpoint, create links over the 
buttons and interactions and link to the appropriate next screen. Either 
way, you can get reactions from potential users very early in the process, 
and make any changes way before it gets coded. e earlier you can 
improve your product, the better.

- 13 -



3. Colours, fonts and so on

is is where the wireframes are used to generate a full mockup of the 
site or application, so you can see exactly what it looks like before it's 
built. It's often called visual design. If you're building really fast, or your 
team can code the front end faster than they can photoshop, skip this 
step.

If this product is part of a bigger site, your fonts, colours, button styles 
and so on may have been de"ned up front. Stick as closely as you can to 
your style guidelines, or the standard widget set - it's faster and creates 
consistency. Consistency is hugely important to your users.

During this process, keep in mind that how your product looks is more 
than just aesthetics. Having a beautiful product sets up an expectation of 
quality.

4. Create a specification

A speci"cation is a document that de"nes what the product looks like and 
how it behaves in every circumstance. You should aim for completeness, 
but recognise that it's hard to get there (especially for a complex 
product).

Engineering will say "I'm done!" once the speci"cation is complete. It's the 
goal they're aiming for.
After code is complete, the product will be tested. ose tests are derived 
directly from the speci"cation.
e actual process of documenting the product will help you think 
through edge cases.

- 14 -



Edge cases are situations that can occur, but aren't things you initially 
considered. For example - let's say that you create a user preferences 
screen. What does it look like if someone goes to this screen when logged 
out? De"ne some behaviour for this case and use it to "ll out your 
speci"cation.

5. Create a plan for release

As the speci"cation is a bible for engineering, the release plan is a bible 
for everyone else as the product is released. ere are lots of different 
ways to release a product, and the larger your user community is, the 
greater risk, and the more careful you should be. For example, one way to 
mitigate risk is release a product internally (called "dogfooding"), or to a 
limited set of beta testers to get feedback before releasing it to all users.

e release plan is a list of who is doing what, on what day. e plan is a 
list of dates, activities and the person responsible. Here's a sample plan:

12th May: Initial communication to beta group (Bob)
13th May: Release to beta group (Alice), begin collection of feedback 
(Bob, Me)
17th May: Code freeze (Alice)
18th May: Release to testing systems (Alice)
19th May: Communicate to wider user community (Bob)
24th May: Release to live systems (Alice), gather feedback (Bob, Me)

- 15 -



6. Ask engineering to build it

While the product is being built, you should have done enough work up 
front to feel like you can post the speci"cation off to the developers and 
go work on the next thing. e reality is that your engineers will 
absolutely need to talk to you - when making a project real, every detail of 
the speci"cation becomes important. If you've missed anything, they will 
let you know, and every occurrence means a potential change in 
functionality.

At the same time your engineers are keeping you on your toes, you 
should be doing the same. You probably have assigned a limited time and 
number of engineers to work on the product. Make sure that the 
development is keeping to schedule. If it isn't, you have a choice - do you 
cut features, or extend development? Rushing to cut features to meet a 
development deadline can easily lead to a substandard product. On the 
other hand, extending development can lead to projects that never 
complete, and development will always extend to "ll the time allotted.

7. Testing code

Starting a project is fun. It's ideas, it's something new and shiny. Anyone 
can start a project, but this is the hard part - completing it is the real test.

As the product nears completion, your engineers will (or should) start 
running standard tests to verify that it meets the speci"cation. For web 
applications, there are a few copies of the software on different machines 
- engineers shouldn't be working on the same system that users are on.

- 16 -



• e development system, affectionately nicknamed "dev". is is where 
engineers are actively creating new stuff.

• e QA (Quality Assurance) system. is should be an exact copy of the 
live system. (Usually the QA is still slightly different than live, simply 
because it's difficult to simulate the load of hundreds of thousands of 
users, or a caching system.) If you are testing really quickly, or your site 
is still small, this system might not exist yet.

• e live system (sometimes called "prod" or production), which users are 
using. Contains stable, tested code.

You should also be playing with the freshly minted product on the 
development system - does it feel like what you expected? If there are 
serious problems, or if you have a brilliant new idea, you have the option 
to stop, rework the speci"cation and ask your engineers to make changes. 
If it feels good, it's time to move forward to the next step.

8. Testing on users

e product is completed and working, and you're itching to release it to 
everyone. Before you do that, you can release it to some users and see 
how they react. ere are a few ways to do this.

Release an alpha / beta. Find a subsection of your users who are happy to 
try new products, give them your new creation, and ask for feedback. You 
get free appreciation from your most loyal users, anticipation from users 
who don't have it yet, and you get to mitigate the risks of releasing to 
everyone at once. On the other hand, it's not as quick.
A/B testing. Here's an example of what that is. Let's say your product is a 
redesigned form to let users sign up. You can easily set up your system so 
it shows half of your visitors the old form, and half the new form - then 
check if more visitors who got the new form signed up. If you get lots of 

- 17 -



visitors, you can just show the new page to a small percentage of visitors, 
minimising the risk to your traffic while still keeping the test valid.

9. Release the product

As a product gets released, someone should be communicating with users 
carefully about what's happening. Tell the user community up front what 
is coming and why you're doing it. You may worry that they'll hate it, and 
that's possible, but it's certainly best you know that up front, and most of 
your users will appreciate being part of the discussion.

You've created a product you're happy with and communicated a plan to 
everyone for the release. Ideally, you should just follow the plan, and 
watch carefully for user reactions and usage data from the product.

at concludes one release cycle.

- 18 -



After your product is built

Your product is done, launched, out there in the market, and people are 
using it. Congratulations, you are about half done.

When you came up with the initial ideas for your product, you basically 
guessed. It was an educated guess - you looked at data, talked to people, 
used your experience and so on - but you couldn't say with absolute 
certainty whether it would work, because you've never launched exactly 
this product into exactly this market before. Now that you have launched, 
you have a golden opportunity to adjust the product. It's like playing 
crazy golf - you whacked the ball vaguely in the right direction, but now 
it's stopped closer to the hole, you have a better chance with each putt to 
sink it and pelvic thrust at your friends in victory.

You should now have two important types of information coming at you.

• Statistical data from the product
• Personal reactions of your users

Both of these are massively important. Data will tell you what is 
happening, people will tell you why. ese are yin and yang - without 
both, your understanding will be incomplete.

- 19 -



Statistical data

If you're building a digital product, you should be able to reap masses of 
data from it. ere's no reason not to use data gathering tools on every 
part of the experience. First, a set of very basic statistics, like pageviews, 
uniques, and clicks on any interface element. en, a set of more 
interesting statistics that are harder to get, but will tell you more.

• Track batches of users through the product %ow. Where are they 
dropping off?

• Get demographic data on your users, identify which ones are important 
to you (e.g. perhaps older users are more likely to purchase), then focus 
your analysis on their behaviour.

• Next, you need to pick out what's important from this data. Go back to 
your list of goals - if you were trying to increase traffic from search, 
examine whether this did or didn't happen. e data may pinpoint an 
issue - for example, if you've created a "ve step process, and you're 
losing 70% of users at step three, that step needs examining.

Personal reactions

Once you have a good idea of what's happening, you need to know why. If 
you are losing users at one stage of the %ow, it might be because your 
copy is confusing, the link to the next step is hard to "nd, or the system 
was too slow for the user. Until you know the answer to why, you cannot 
"x the problem.

To do this, you need to "nd and observe test users. Ideally these should 
be the segment of users you care about - users that are just like the 
persona or personas you created this product for. is can be hard, but 

- 20 -



you can get closer to "nd them with highly targeted ads on sites like 
Facebook. Want to "nd people of a certain age, education level who like 
product X in a certain area? You can "nd them and offer them something 
to talk to you, or pop in for an hour while you observe them doing a task 
with your product. Careful with your incentive - you'll need to set it high 
enough to get them to bite, but not so high that it distorts their feedback. 
(Check the resources section for an alternative approach.)

Pulling them together

Once you have an idea what is happening and why, you can solve the 
problems and release an updated version of your product. Now, you can 
start the process again - analyse data and personal reactions to see where 
the new problems are and "x them. As you continue to iterate, two things 
will happen:

Your product will get better at attacking the goal. Iteration will improve 
your product, but bear in mind that you can only improve what you have 
built already. If the initial premise was %awed, you should remove the 
solution and start again.. In crazy golf terms, if you were shooting at the 
wrong hole in the "rst place, putting closer to it won't help.
e bene"t you get for each iteration will decrease. ere's a lot of work 
involved, and while the "rst few iterations may yield great bene"ts, the 
"fth or sixth iteration may yield little.
erefore, you must decide at what point you are done, and move on to 
the next task in your list. Others will pressure you to move on as quickly 
as possible, because a product looks done once it's launched - stay "rm, 
understand the value of iteration, and move on when you believe you are 
ready.

- 21 -



Your Team

Your team could be just you, you and an engineer, or a whole department. 
In a smaller team, one person will be doing multiple roles (especially you, 
mister product manager). In a bigger team, everyone can specialise, but 
you will work hard to coordinate everyone - so either way, it's important 
that you understand what everyone does and why.

Engineers

Engineers are the tip of the spear. You will point the team in the right 
direction, but it's engineering who will make it happen - whether they do 
it well or poorly will show clearly in the product's quality.

Like Skittles, engineers come in different %avours. For the web:

• Front end. ey create the presentation of information - colours, layout 
and so on. For the web, their skills will likely be in HTML, CSS, 
Javascript and similar technologies.

• Back end. ey create the engines that calculate the information itself - 
a search algorithm, for example.

• Operations. ey keep your servers passing data to hungry browsers 
around the world. If your site is small, you might do this yourself. If it's 

- 22 -



large, you'll need someone with a deep knowledge of servers, clustering, 
routers, and so on.

For a mobile application:

• App developers, who wrote code speci"cally for a mobile operating 
system like IOS or Android. is is usually most of the work.

• Back end work is needed for more complex applications, like an image 
recognition app. In this case the app would take a picture, upload it to 
the back end for processing, and return the results to the user.

• Operations people aren't as commonly needed, because the mobile 
device is doing a lot of the work. However, if your app has a back end, 
you will need operations people to look after those servers.

Good coders are deep thinkers and problem solvers. ey love working on 
a de"ned project, getting to a known goal (which is often "Eureka! It 
works!") and they absolutely will appreciate your direction and support.

Engineers will focus on creating an elegant technical solution. You need 
to balance this with thinking deeply about how your users see it. 
Sometimes a fantastic product has messy code behind it - it'll work, but 
be difficult to maintain and scale. Sometimes a terrible product has 
elegant code behind it, and it doesn't matter if it's easy to maintain or 
not.

Project Managers

Project managers are organisers. ey make sure that everyone is 
communicating, that the project is going to be delivered on time, and 
nudge along anyone who needs it. ey know that a smooth process 
means that multiple projects can be handled at once, and they can predict 

- 23 -



more accurately when a project will be completed. ere can be a degree 
of overlap with your role - both of you have a direct incentive to make 
sure that development happens smoothly. However, their role is often 
focused on organising the engineering team, and they only start on a 
project once the speci"cation is completed.

Project managers want to have a smooth process, allowing them to more 
easily predict completion dates and plan everyone's time. at's not 
always possible - sometimes creating the best product possible means 
having a degree of chaos in the process.

Community Managers

For products on the web, the user community is massively important. 
Consider that customers in an area like retail don't actually talk to each 
other much - it's not often that someone in the queue next to you in 
Target gives you their opinion on the kitchenware section. e web is 
different - your users are talking to each other all the time. Your 
organisation should be part of that conversation - that's what community 
managers do.

Communities often follow the "90 9 1" model - 90 percent of your users 
will be readers, observers, consumers - 9 percent will talk or produce 
content now and then, and 1 percent will talk all the time, and heavily 
in%uence the behaviour of others. e most powerful in%uence on 
consumers is word of mouth, and this is where it comes from online.

Community managers want to get products that satisfy the existing user 
community. You need to balance this with the needs of future users you 
hope to attract with this product.

- 24 -



Analysts

Analysts are similar to engineers in that they work with complex systems 
and large amounts of data. However, they aren't as focused on solving 
problems - they examine data to see what kind of behaviour it suggests. 
at allows you to do two things:

Optimise the kind of behaviour that you want from your users. For 
example, if you are guiding them towards a purchase, you can see at what 
step they are dropping out.
Identify behaviour that you didn't expect. ere are only a few people 
inside the company thinking about how a product could be used, while 
there might be hundreds of thousands of users outside the company 
thinking about the same thing - and some smart alec discovers something 
you weren't planning on. Data helps you spot it, and either prevent it (if 
it's harmful) or encourage it (if it's wonderful).
Analysts will spend a bunch of time on research. Here's what that actually 
is.

• Site analytics: is data tells you exactly what's happening on your site. 
To cover the basics, you should be tracking all pageviews or screen 
views, and every click on every object on the site (no surprise to discover 
this is called "clicktracking"). If you have the time or resources, you 
should also be tracking visitors across the site, allowing you to 
understand what the most common paths are from page to page.

• Primary research: e analyst "nds a bunch of users and asks them 
questions, like "How many times a day do you use our site?" It's very 
easy for this to be biased - for example, this question assumes the site is 
used more than once a day.

• Secondary research: e analyst reads a study that someone else has 
done and "gures out how applicable they are to the immediate 
situation. is is where Forrester, Gartner, eMarketer and friends are 

- 25 -



used. For example, if a Forrester study reports that US smartphone 
users are using check-in services more, that might indicate a feature for 
your product.

Data can easily be misused in an organisation. Primary and secondary 
research is not a measure of what is happening, but a guess at what might 
happen, and assumptions are always necessary. Furthermore, because 
deep analysis is time consuming, the results often become gospel - even 
more so when backed up by words like Forrester and Gartner. If you're 
analysing, be sure that your methods are open and easy to understand. If 
you're examining the results of an analysis, understand the assumptions 
and the methodology - these can easily %ip the results of a study on their 
head.

As a product manager, you probably have some keen insight in to the 
behaviour of people as they interact with technology. It's possible to draw 
conclusions from what you know, and skip all of this time consuming 
research stuff. at's absolutely the right thing to do if you are making a 
non-critical decision very quickly. If not, be aware of two things - one, 
your competition probably have the same insights you do, and two, you 
are looking for surprises in the data, and you don't know yet what might 
be in there.

Analysing data is like unwrapping a present. If it looks like a book and 
doesn't rattle when you shake it, it's probably a book - but a surprise 
makes the best present.

- 26 -



Design

Designers are half problem solvers, half artists. ey are constantly 
solving the problem of how to make something easy to use. ey are 
constantly striving to create something beautiful.

Making something easy to use is hard. Add functionality, and it becomes 
harder to use. One solution is to present the appropriate functions at the 
appropriate time. An excellent example is In 'n' Out burger, a chain of fast 
food restaurants in California. As you walk in, there's a menu pinned 
above the counter that's incredibly simple and familiar - cheeseburger, 
hamburger, coke, shake, fries. No confusion. However, there is a "secret 
menu" containing variations of the defaults. is is something users 
often discover after a few visits - just at the point where they needed a 
new option. No boredom. Continue to add more depth as a user's 
experience grows, and you'll keep them coming back for more. An 
excellent example of this is World of Warcraft - as you progress, you 
discover more about the story, your character, and can do more in the 
game. However, I wouldn't recommend that you try it - because of this 
balance, it's highly addictive.

Making an application where users notice how amazing the design is 
should not be a goal. e best tools are ones that you don't notice - your 
screwdriver has a grip, your tea cup has a handle, your shoes don't hurt 
your feet. Everything that doesn't have an impact on how usable a site is - 
colours, styles, fonts and so on - is really marketing. ese choices come 
together to give a site a feel - and that feel helps de"ne the emotions 
people have when they use your application. Does it make them feel 
businesslike, or welcome, or edgy? at's the de"nition of brand.

- 27 -



Designers want to create a beautiful product they can be proud of. You 
need to balance this with getting your product out early so you can test a 
reaction, and correct as necessary.

Marketing and Strategy

Marketing and strategy people often have posh suits and MBAs, and an 
important function. ey consider whether a product is a good idea in the 
"rst place, and if it is a good idea, how to make them feel good about 
buying it. at means two things - brand and strategy.

• Brand is not a logo or an advert - it is how people feel about you.
• Strategy is not a huge, sleep-inducing powerpoint presentation - it is the 

answer to the question: "Why will this work?"

Marketing's job is to improve this emotional reaction, because a user's 
feeling about a product rules how much they would pay, whether they 
would use your service again, and so on. If someone says "Walmart" do 
they think about cheap prices or mom and pop stores going out of 
business? If someone says "Apple" do they think about style or pointless 
expense? Emotion is de"ned by everything from a celebrity endorsement 
to the font in the logo.

Marketing and strategy people use a couple of tools to make sure they've 
covered all the obvious questions. e three Cs: Customer (who are they), 
Competition and Company (understanding our own capabilities). e "ve 
Ps: Product, Price, Promotion, Place, Partners. For each of these aspects, 
consider the options. How much should I sell my app for? Would I sell 
more if I lowered the price? How much more? Is it worth the tradeoff? 
Should I promote the app? Would the expected bump in sales be worth 
the cost of promotion?

- 28 -



Marketing and strategy focus on cash %ow and keeping the organisation 
a%oat. You need to balance this with doing what's best for the user, so 
you can create a great product for the long term and provide a fair 
exchange - they get something good, you get something good.

- 29 -



You Yourself

Organisations all work differently, but there's often one role that pulls 
everything together. At tech companies, that role is often the product 
manager. at's you.

Unfortunately, that doesn't mean that you get a cushy office, afternoons 
on the golf course, a secretary and your people talking to their people. As 
a PM, your team probably doesn't report directly to you - you are there to 
serve the team, not the other way around. Here's how to do that:

• Make sure everyone is communicating.
• Point everyone in the same direction.
• Do the boring work that no-one else wants to do.

Communication

e most important skill you have in this area is the ability to listen. In 
other words, the ability to shut up, understand where people are coming 
from and adapt your approach to get the best results. Sometimes that 
means changing what you're saying - remember that people talk about 
the things that are important to them. Sometimes that means changing 
the way you're saying it - the best way to do that is by copying the style of 
the person you're talking to.

- 30 -



• In their speech, loud / quiet, or a fast / slow talker.
• In their body language, relaxed and laid back or leaning forward and 

intense.
• In their choice of words, technical or simple.
• In their demeanour, con"dent or reserved.

Don't make it wild and obvious - just check yourself if you spot that 
you're talking all brash and con"dent to someone who isn't, or vice versa. 
is puts you both on the same level, and you'll "nd that you suddenly 
understand one another much better.

People in a team need to communicate. Some hate talking to anyone else, 
and want to just get on with real work. Some want to know exactly what 
everyone else is doing and give their opinions. Most people communicate 
less than they need to, but broadcasting everything to everyone 
(especially in a large company) can also be a waste of time.

Getting the team talking usually involves a meeting. ese can be 
incredibly useful or an incredible waste of time. Here's how to make them 
work:

• Meetings make decisions. Make those decisions "rm and restate them 
at the end of the meeting, so there's no confusion.

• Force meetings to start on time and end on time. If anyone is late, start 
anyway.

• Keep track of time during the meeting. Kill the conversation quickly if 
it's getting irrelevant.

• Inviting people who don't need to be there is just covering your ass. 
Don't do it - it wastes everyone's time, including yours.

Passionate people will argue out their opinions. ose opinions are 
valuable. Don't argue all the time - it's exhausting, and can drive the team 
apart. Most importantly, don't agree all the time - that leads to a lack of 

- 31 -



clarity. It comes right down to the very words you use in a meeting, or a 
document, or an email. e more you compromise to avoid con%ict, the 
less clear anyone is on anything. Here's how that language can change:

• X is the best option
• X is probably the best option
• X may be a good option
• X, Y and Z are possible options
• e choice of option is probably due to some other aspects of the issue, 

A and B, which are still unknown, and we need to progress our 
understanding on these to a more satisfactory place. It would be best to 
get some leadership on this from department P owing to their deep 
expertise in area Q. Feel free to follow up on this either with me or 
department P, and after the appropriate process has been applied, we 
will look to follow up with some thoughts on X versus Y. I would love to 
be as engaged as we can be going forward, so please keep us in the loop. 
Regards, an asshole.

Suddenly, you won't be able to make any gutsy decisions and progress in 
the company will slow to a crawl. Everyone will start bitching about it at 
the pub after work, pinning the blame on someone else for how it went 
wrong. at's a company no one wants to work at - don't let it happen.

Point everyone in the same direction

Everyone in your team has a job to do that contributes to part of the 
whole, but that whole looks different from everyone's perspective. When 
you're in the thick of it, it's absolutely natural to focus on your own work, 
and that's usually a good thing. Sometimes it can be damaging - your 
engineers want to create a technically manageable solution, your analysts 
want something trackable, your community managers want something 

- 32 -



that won't ruffle feathers, and so on. Your job is to keep reminding people 
that they're all shooting for the same goal. Focus on the user. No-one 
wants to create a product that sucks.

Passion is what drives good people to do good work. Your job as a product 
manager is to get people passionate, and pointing in the same direction. 
Part of that comes from your passion. If you truly believe this is the best 
product for your organisation to create right now, it rubs off on others. If 
you don't believe it, nobody else will.

The boring work

Everyone in the team has a specialised skill to contribute. Your 
specialised skill is that you have no specialised skill - you are a jack of all 
trades. at means you can "ll in the easy, boring stuff where needed. If 
some ongoing analytics need updating, do that. If a status report to 
someone needs writing, do that. If your engineer's email has gone down 
and needs "xing, do that. Everyone should be doing stuff that no-one else 
can do - except you. You're the mortar that makes bricks stick together. 
e grease that makes the wheels turn.

Finally

As a product manager, you have to power to "x any problem. It's your 
responsibility. You set the goal at the start, you encouraged everyone to 
chase it. You'll believe in what you do. If you can do that, you can create 
something amazing for your users and your organisation.

at's changing the world, a piece at a time.

- 33 -



Resources

Wireframes

If you're looking for wireframing tools, try these:

• On the web: Balsamiq, Mockingbird.
• On your computer: Omnigraffle (not free), Illustrator (not free), 

Inkscape (free).
• On your desk: A sharpie and a piece of paper.

Remember that what's important is the output, not the tool you used.

User testing

e best option for user testing is to see users face to face, and 
understand their reactions. at non-verbal communication - a 
momentary smile, a frown, a raised eyebrow - will speak volumes about 
the emotions of the user while they use your product, and this is exactly 
the information you need.

- 34 -



Alternatively, there are a bunch of sites you can use to do user testing. 
None are as good as seeing someone's expression change with your own 
eyes, but they are quick, cheap and absolutely better than nothing.

• usertesting.com
• userlytics.com
• loop11.com

Thanks

Firstly, thank YOU for reading this book - I hope you enjoyed it. If you 
didn't enjoy it, put this down, and go have dinner with someone 
interesting. Life's too short to do anything dull. If you've read this far, I'd 
love to hear from you - you'll "nd me at shahid@shahidhussain.com or on 
twitter.com/shahidhussain.

Books like this are a collection of experiences, and I've been lucky to have 
some great teachers. ank you to everyone who I've worked with and 
learned from.

Angie Shelton, Danny Horn, Sean Colombo, Gil Penchina, Pamela Ramali, 
Erik Nordby, many many professors at Kellogg (especially Harry Kraemer, 
Kent Grayson and Don Norman), Katina Johnson, and all my other 
colleagues and friends.

ank you also to everyone who helped me bump version numbers on 
this text: Sean Colombo, Pamela Ramali, Shaykat Chaudhuri and Sanjeev 
Kalia.

Now quit reading this, go out there and build something!

- 35 -

mailto:shahid@shahidhussain.com
mailto:shahid@shahidhussain.com
http://twitter.com/shahidhussain
http://twitter.com/shahidhussain

